671 research outputs found

    High dispersive and monolithic 100% efficiency grisms

    Full text link
    We present a type of grism, a series combination of transmission grating and prism, in which we reduce the number of diffraction orders and achieve a configuration with very high angular dispersion. The grism can be fabricated from a single dielectric material and requires no metallic or dielectric film layers for high transmission diffraction efficiency. One can reach 100% in the -1st transmission diffraction order and the equal damage threshold as the dielectric bulk material. We realized such an element in fused silica with an efficiency of more then 99%. The bevel backside reflection is reduced by a statistical antireflective structure, so we measured an efficiency of the entire grism of 95% at a single wavelength

    Asymmetric transmission of linearly polarized light at optical metamaterials

    Full text link
    We experimentally demonstrate a three-dimensional chiral optical metamaterial that exhibits an asymmetric transmission for forwardly and backwardly propagating linearly polarized light. The observation of this novel effect requires a metamaterial composed of three-dimensional chiral metaatoms without any rotational symmetry. Our analysis is supported by a systematic investigation of the transmission matrices for arbitrarily complex, lossy media that allows deriving a simple criterion for asymmetric transmission in an arbitrary polarization base. Contrary to physical intuition, in general the polarization eigenstates in such three-dimensional and low-symmetry metamaterials do not obey fxed relations and the associated transmission matrices cannot be symmetrized

    Multi-Pulse Laser Wakefield Acceleration: A New Route to Efficient, High-Repetition-Rate Plasma Accelerators and High Flux Radiation Sources

    Get PDF
    Laser-driven plasma accelerators can generate accelerating gradients three orders of magnitude larger than radio-frequency accelerators and have achieved beam energies above 1 GeV in centimetre long stages. However, the pulse repetition rate and wall-plug efficiency of plasma accelerators is limited by the driving laser to less than approximately 1 Hz and 0.1% respectively. Here we investigate the prospects for exciting the plasma wave with trains of low-energy laser pulses rather than a single high-energy pulse. Resonantly exciting the wakefield in this way would enable the use of different technologies, such as fibre or thin-disc lasers, which are able to operate at multi-kilohertz pulse repetition rates and with wall-plug efficiencies two orders of magnitude higher than current laser systems. We outline the parameters of efficient, GeV-scale, 10-kHz plasma accelerators and show that they could drive compact X-ray sources with average photon fluxes comparable to those of third-generation light source but with significantly improved temporal resolution. Likewise FEL operation could be driven with comparable peak power but with significantly larger repetition rates than extant FELs

    Diffractive Optics for Gravitational Wave Detectors

    Get PDF
    All-reflective interferometry based on nano-structured diffraction gratings offers new possibilities for gravitational wave detection. We investigate an all-reflective Fabry-Perot interferometer concept in 2nd order Littrow mount. The input-output relations for such a resonator are derived treating the grating coupler by means of a scattering matrix formalism. A low loss dielectric reflection grating has been designed and manufactured to test the properties of such a grating cavity

    Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors

    Full text link
    Low mechanical loss materials are needed to further decrease thermal noise in upcoming gravitational wave detectors. We present an analysis of the contribution of Akhieser and thermoelastic damping on the experimental results of resonant mechanical loss measurements. The combination of both processes allows the fit of the experimental data of quartz in the low temperature region (10 K to 25 K). A fully anisotropic numerical calculation over a wide temperature range (10 K to 300 K) reveals, that thermoelastic damping is not a dominant noise source in bulk silicon samples. The anisotropic numerical calculation is sucessfully applied to the estimate of thermoelastic noise of an advanced LIGO sized silicon test mass.Comment: 7 pages, 3 figures, submitted to Journal of Physics: Conference Series (AMALDI8

    High-sensitivity tool for studying phonon related mechanical losses in low loss materials

    Full text link
    Fundamental mechanical loss mechanisms exist even in very pure materials, for instance, due to the interactions of excited acoustic waves with thermal phonons. A reduction of these losses in a certain frequency range is desired in high precision instruments like gravitational wave detectors. Systematic analyses of the mechanical losses in those low loss materials are essential for this aim, performed in a highly sensitive experimental set-up. Our novel method of mechanical spectroscopy, cryogenic resonant acoustic spectroscopy of bulk materials (CRA spectroscopy), is well suited to systematically determine losses at the resonant frequencies of the samples of less than 10^(-9) in the wide temperature range from 5 to 300 K. A high precision set-up in a specially built cryostat allows contactless excitation and readout of the oscillations of the sample. The experimental set-up and measuring procedure are described. Limitations to our experiment due to external loss mechanisms are analysed. The influence of the suspension system as well as the sample preparation is explained.Comment: 4 pages, 3 figures, proceedings of PHONONS07, submitted to Journal of Physics: Conference Serie

    Single-shot autocorrelator for KrF subpicosecond pulses based on two-photon fluorescence of cadmium vapor at X = 508 nm

    Get PDF
    By excitation of cadmium vapor with a high-peak-power KrF excimer laser pulse, fluorescence of an atomic transition at X = 508 nm is induced by a two-photon ionization process followed by fast recombination. The nonlinear response of the medium is used to develop a simple single-shot autocorrelator for subpicosecond KrF excimer laser pulses operating down to intensities of less than 109W/cm.2 We have measured 360-fs (FWHM) pulses at X = 248 nm with a time resolution of 15 fs

    Demonstration of 3-port grating phase relations

    Full text link
    We experimentally demonstrate the phase relations of 3-port gratings by investigating 3-port coupled Fabry-Perot cavities. Two different gratings which have the same 1st order diffraction efficiency but differ substantially in their 2nd order diffraction efficiency have been designed and manufactured. Using the gratings as couplers to Fabry-Perot cavities we could validate the results of an earlier theoretical description of the phases at a three port grating

    Infrared recombination lasers pumped by low energy Nd: YAG and excimer lasers

    Get PDF
    24 infrared laser lines on atomic and ionic transitions have been observed in recombining plasmas by vaporizing and ionizing Cd, Pb, Sn, Zn, and Mg with low energy Nd:YAG or excimer pump-lasers. For operation and optimization of the recombination lasers separated plasma spots and a plasma confinement have been used. The operation of shorter wavelength systems by isoelectronic scaling is discussed

    Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices

    Full text link
    We report on the experimental observation of two-dimensional surface solitons residing at the interface between a homogeneous square lattice and a superlattice that consists of alternating "deep" and "shallow" waveguides. By exciting single waveguides in the first row of the superlattice, we show that solitons centered on deep sites require much lower powers than their respective counterparts centered on shallow sites. Despite the fact that the average refractive index of the superlattice waveguides is equal to the refractive index of the homogeneous lattice, the interface results in clearly asymmetric output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review
    corecore